529 research outputs found

    Spectral Statistics of "Cellular" Billiards

    Full text link
    For a bounded planar domain Ω0\Omega^0 whose boundary contains a number of flat pieces Γi\Gamma_i we consider a family of non-symmetric billiards Ω\Omega constructed by patching several copies of Ω0\Omega^0 along Γi\Gamma_i's. It is demonstrated that the length spectrum of the periodic orbits in Ω\Omega is degenerate with the multiplicities determined by a matrix group GG. We study the energy spectrum of the corresponding quantum billiard problem in Ω\Omega and show that it can be split in a number of uncorrelated subspectra corresponding to a set of irreducible representations α\alpha of GG. Assuming that the classical dynamics in Ω0\Omega^0 are chaotic, we derive a semiclassical trace formula for each spectral component and show that their energy level statistics are the same as in standard Random Matrix ensembles. Depending on whether α{\alpha} is real, pseudo-real or complex, the spectrum has either Gaussian Orthogonal, Gaussian Symplectic or Gaussian Unitary types of statistics, respectively.Comment: 18 pages, 4 figure

    Insecurity for compact surfaces of positive genus

    Full text link
    A pair of points in a riemannian manifold MM is secure if the geodesics between the points can be blocked by a finite number of point obstacles; otherwise the pair of points is insecure. A manifold is secure if all pairs of points in MM are secure. A manifold is insecure if there exists an insecure point pair, and totally insecure if all point pairs are insecure. Compact, flat manifolds are secure. A standing conjecture says that these are the only secure, compact riemannian manifolds. We prove this for surfaces of genus greater than zero. We also prove that a closed surface of genus greater than one with any riemannian metric and a closed surface of genus one with generic metric are totally insecure.Comment: 37 pages, 11 figure

    Low rank perturbations and the spectral statistics of pseudointegrable billiards

    Full text link
    We present an efficient method to solve Schr\"odinger's equation for perturbations of low rank. In particular, the method allows to calculate the level counting function with very little numerical effort. To illustrate the power of the method, we calculate the number variance for two pseudointegrable quantum billiards: the barrier billiard and the right triangle billiard (smallest angle π/5\pi/5). In this way, we obtain precise estimates for the level compressibility in the semiclassical (high energy) limit. In both cases, our results confirm recent theoretical predictions, based on periodic orbit summation.Comment: 4 page
    • …
    corecore